💎

Beginner Tutorial

Beginner Tutorial: Building Your First AI-Powered Workflow with Solana Synq

Welcome to Solana Synq, where we integrate AI-powered tools into the Solana ecosystem. In this beginner tutorial, you’ll learn how to set up your environment, interact with Solana Synq, and build a simple AI-driven workflow for analyzing on-chain transaction data.

Step 1: Prerequisites

Before starting, make sure you have the following:

Installed Tools:

Python 3.8 or later

Node.js 16.x or later

Solana CLI installed (solana --version)

Solana Test Wallet: Create one using the Solana CLI:

bashCopy codesolana-keygen new --outfile ~/.config/solana/id.json

Basic Knowledge: Familiarity with Python, JavaScript, or TypeScript is helpful.

API Key: Sign up at api.SolanaSynq.xyz and retrieve your API key.

Step 2: Installing Solana Synq

The Solana Synq framework (Solana Synq) is available for both Python and JavaScript/TypeScript.

For Python:

Install the SolanaSynq library:

bashCopy codepip install SolanaSynq

For JavaScript/TypeScript:

Install the package using npm:

bashCopy codenpm install SolanaSynq

Step 3: Setting Up Your Project

Create a folder for your project and initialize your preferred language environment.

Python:

bashCopy codemkdir SolanaSynq-tutorial

cd SolanaSynq-tutorial

python -m venv venv

source venv/bin/activate

JavaScript/TypeScript:

bashCopy codemkdir SolanaSynq-tutorial

cd SolanaSynq-tutorial

npm init -y

Step 4: Initializing the Solana Synq Client

Python Example:

Create a file named main.py and add the following:

pythonCopy codefrom SolanaSynq import SolanaSynqClient

# Initialize Synapse Client

client = SolanaSynqClient(api_key="your_api_key")

# Verify connection

print("SolanaSynq Client Initialized:", client)

Run the script:

bashCopy codepython main.py

JavaScript/TypeScript Example:

Create a file named index.js and add the following:

javascriptCopy codeconst { SynapseClient } = require('solsynapse');

// Initialize Solana Synq Client

const client = new SynapseClient({ apiKey: 'your_api_key' });

// Verify connection

console.log('Synapse Client Initialized:', client);

Run the script:

bashCopy codenode index.js

Step 5: Loading a Pre-Trained Model

Solana Synapse includes pre-trained models for tasks like sentiment analysis, trading, and data visualization. Let’s load the sentiment analysis model.

Python:

pythonCopy code# Load sentiment analysis model

model = client.load_model("sentiment-analysis")

# Display model info

print("Loaded Model:", model)

JavaScript:

javascriptCopy code// Load sentiment analysis model

const sentimentModel = client.loadModel('sentiment-analysis');

// Display model info

console.log('Loaded Model:', sentimentModel);

Step 6: Fetching Blockchain Data

Use Solana Synapse to fetch recent Solana blockchain transactions.

Python:

pythonCopy code# Fetch blockchain data

transactions = client.fetch_chain_data("recent_transactions", chain="Solana")

# Display the first few transactions

print("Recent Transactions:", transactions[:5])

JavaScript:

javascriptCopy code// Fetch blockchain data

client.fetchChainData('recent_transactions', 'Solana').then((data) => {

console.log('Recent Transactions:', data.slice(0, 5));

});

Step 7: Analyzing Blockchain Data with AI

Now, let’s analyze the sentiment of recent transactions using the pre-trained model.

Python:

pythonCopy code# Analyze sentiment

results = model.infer(transactions)

# Display sentiment analysis results

print("Sentiment Analysis Results:", results)

JavaScript:

javascriptCopy code// Analyze sentiment

client.fetchChainData('recent_transactions', 'Solana').then((data) => {

const results = sentimentModel.infer(data);

console.log('Sentiment Analysis Results:', results);

});

Step 8: Automating Workflows

To automate repetitive tasks, use the Workflow Automator. For example, set up an alert for negative sentiment on transactions.

Python:

pythonCopy code# Define a callback function for negative sentiment

def alert_on_negative_sentiment(results):

for result in results:

if result["sentiment"] == "negative":

print("⚠️ Negative Sentiment Detected:", result)

# Automate sentiment analysis

client.workflow_automator.add_task(

task_name="NegativeSentimentAlert",

model=model,

data_source="recent_transactions",

callback=alert_on_negative_sentiment,

)

# Start the workflow

client.workflow_automator.run()

JavaScript:

javascriptCopy code// Define a callback for negative sentiment

const alertOnNegativeSentiment = (results) => {

results.forEach((result) => {

if (result.sentiment === 'negative') {

console.log('⚠️ Negative Sentiment Detected:', result);

}

});

};

// Automate sentiment analysis

client.workflowAutomator.addTask({

taskName: 'NegativeSentimentAlert',

model: sentimentModel,

dataSource: 'recent_transactions',

callback: alertOnNegativeSentiment,

});

// Start the workflow

client.workflowAutomator.run();

Step 9: Visualizing Data

Use the data visualization model to generate a bar chart of transaction volumes.

Python:

pythonCopy code# Load data visualization model

viz_model = client.load_model("data-visualization")

# Generate bar chart

chart = viz_model.generate_chart(data=transactions, chart_type="bar")

# Display chart

chart.show()

JavaScript:

javascriptCopy code// Load data visualization model

const vizModel = client.loadModel('data-visualization');

// Generate bar chart

client.fetchChainData('recent_transactions', 'Solana').then((data) => {

const chart = vizModel.generateChart(data, 'bar');

chart.render();

});

Step 10: Deploy Your First Workflow

Integrate your workflow into a dApp or script for seamless operation.

Python Deployment Example:

__name__

__main__

print("Running AI-Powered Workflow")

client.workflow_automator.run()

JavaScript Deployment Example:

javascriptCopy code(async () => {

console.log('Running AI-Powered Workflow');

await client.workflowAutomator.run();

})();

Next Steps

Congratulations! You’ve built and automated your first AI-powered workflow using Solana Synq. Here are some next steps:

Explore more pre-trained models like trading bots and data visualizations.

Integrate your workflow into a Solana dApp.

Experiment with custom AI models using the deploy_model function.